Research Overview

The oceans are the largest habitat on Earth, representing 80% of our biosphere. Nevertheless, we know relatively little about the deep ocean, in particular about the microbes — Archaea and Bacteria — that live there. To date, our knowledge of the role that marine microbes play in mediating biogeochemical cycles is limited because A) the vast majority have eluded cultivation, and B) the technical challenges of working the deep ocean (immense pressures and corrosivity) have hindered our ability to conduct experiments in situ.

A more comprehensive understanding of microbially mediated biogeochemical processes requires a more thorough and quantitative investigation of marine microbial physiology and ecology, both in situ and ex situ. Here we present our research interests, study sites, and some of the approaches we have developed to conduct our research. We employ molecular microbiological and geochemical approaches to ally microbial identity with metabolic activity, and it is our goal to further our understanding of the microbial world through concerted, multidisciplinary research.

Research Interests

Microbial Ecological Physiology
Understanding the relationship between microbial ecology, physiology and the geochemical milieu at hydrothermal vents and hydrocarbon seeps.

Animal-Microbial Symbioses
Physiological and biochemical adaptation of microbes and their hosts to one another and the environment.

Extracellular Electron Transfer
Characterizing microbial EET in marine environments, and constraining the role of EET on global geochemical cycles.

Study Sites

Hydrothermal Vents
Vents are among the most extreme environments in our biosphere, host wondrous communities of microbes and animals, and some of the most productive habitats known.

Hydrocarbon Seeps
Substantial communities of microbes and animals, many of them living in symbiotic association, make a living off oil and natural gas.

Tools

In Situ Mass Spectrometer
An open-access, high-performance instrument that enables quantification of many dissolved gasses on the seafloor.

Laser Spectrometer
An unprecedented tool for analyzing methane isotopes in situ.

iSMASH
The In situ Macerator and Sample Homogenizer (iSMASH) allows for preservation of animal and microbial mRNA on the seafloor.

HPRS, HPRV
The high-pressure respirometry system (HPRS) and recovery vessel (HPRV) are used to study microbial and metabolic rates on board ship and in the lab.

AMIS
Laboratory-based system for mimicking the conditions found in sediments from hydrocarbon seeps and other deep ocean environments.

Juan de Fuca
Hydrothermal vents

Juan de Fuca

Monterey Bay
Hydrocarbon seeps

Monterey Bay

Lau Basin
Hydrothermal vents

Lau Basin

Gulf of Mexico
Hydrocarbon seeps

Gulf of Mexico